

Suppl. Table 1

Location of cohort	Clade	Number of	Number (%)	Viral load (copies /ml plasma)		CD4+ T cell count (cells/ml)	
		subjects	with HLA-B*3501	Median	IQR	Median	IQR
Kumamoto, Japan	В	242	37 (15.3)	19500	2575-92000	278	127-469
Mexico City, Mexico	В	771	72 (9.3)	40013	10199-124000	399	157-593
Durban, South Africa	С	1218	46 (3.8)	38200	7315-154250	376	239-519
Gaborone, Botswana	С	514	26 (5.1)	19100	3920-78200	342	220-476

Suppl. Table 2

Protein OLP number	Clade	OLP sequence	p°	ď,	Optimal epitope		Epitope	
	number					P2 ↓	C-terminus ↓	name
p24 Gag 29	29	В	AAEWDRLHPVHAGPIA	8.91E-13	1.73E-19	H P V H A G P	I <u>A</u>	
		С				- -		
p24 Gag	30	ВС	L H P V H A G P I A P G Q M R E P R		9.46E-05	H <u>P</u> V H A G P	I <u>a</u>	Gag−HA9 ^b
Nef	85	В	RYPLTFGWCFKLVPV	5.59E-07	7.28E-07	Y P L T F G W	С <u>х</u>	Nef-YY9
		С				- -	- <u>r</u>	Nef-YF9b
Rev 95	95	В	DEELLKTVRLIKFLY	1.55E-07	3.50E-08	K <u>T</u> V R L I K	F L <u>¥</u>	Rev-KY10
		С	AQAII			Q A I	I	Rev-QY10
RT	223	В	Q L E K E P I V G A E T F Y V D G A	9.72E-08	1.32E-08	E P I V G A E	_	RT-EY10°
		С	A	•		- - - A	-	
Int	252	В	GYIEAEVIPAETGQETAY	1.41E-09	1.07E-12	I PAETGQ	ЕТА <u>ч</u>	Int-IY11

Suppl. Table 3

Redidue at position Gag260 (HXB2)	HXB2 Position	Target amino acid	Consensus amino acid	Direction of the association with Gag260	N	P-value	Q-value	Conditions ^a
Е	146	Р	Α	Negative	1817	1.2E-06	8.7E-04	B*57, Cw*06, 242N, 168I, 149A
E	168	1	V	Negative	1840	1.1E-10	1.8E-07	
D	207	D	Е	Negative	1852	3.1E-06	2.0E-03	
D	215	V	L	Negative	1853	7.0E-12	1.3E-08	
E	215	1	L	Positive	1853	3.8E-07	3.1E-04	2561
D	228	V	М	Negative	1853	3.3E-07	2.7E-04	
D	250	1	М	Negative	1856	5.1E-15	1.5E-11	
Е	256	V	1	Positive	1823	7.1E-07	5.4E-04	250I, 138A
E	268	М	L	Negative	1856	5.9E-06	3.4E-03	

 $^{^{\}rm a}$ These variables were added to the model before residue at Gag260 was added

^a p and q values for association between expression of HLA-B*3501 and response to OLP computed from analysis of ELISpot data from 1009 subjects ^b Location of epitope also defined by identification of sequence polymorphism associated with HLA-B*3501 in 710 C-clade infected subjects in Durban, South Africa

Suppl. Figure 1: Unequivocal confirmation of HA9 (HPVHAGPIA, Gag-216-224) as an optimal epitope restricted by HLA-B*3501.

A: Significant associations between IFNγ ELISpot responses to either OLP-29 and/or OLP-30 (containing the HA9 peptide) and expression of HLA-B*3501; pooled data from subjects in Durban, South Africa (C-clade infected, n=795) and the Thames Valley Cohort (mixed clades, n=214). Of these, 48 (4.7%) had HLA-B*3501. p value by Fisher's exact test.

B: IFNγ ELISpot responses made by an HLA-B*3501-positive adult subject with chronic B-clade HIV-1 infection (Thames Valley subject R051, HLA-A*0101, -A*3002, -B*1801, -B*3501, -Cw*0401, -Cw*0501) in response to the optimal epitope HA9 and four peptide truncations of this peptide.

C: HLA-B*3501-HPVHAGPIA (HA9) tetramer staining of B-clade HIV-1 infected subject (Thames Valley subject N030, HLA-A*0201, -A*0301, -B*3502, -B*4402, -Cw*0401, -Cw*0501) responding to OLP-29/30 (left) controlled by HLA-mismatch tetramer (HLA-B*4402) (middle) and a non-HA9 responder subject (Thames Valley subject OX035, HLA-A*0201, -A*1101, -B*1801, -B*3501, -Cw*0401, -Cw*0501) stained with HLA-B*3501-HA9 tetramer (right).

Suppl. Table 1: Characteristics of unpublished study cohorts

Suppl. Table 2: Novel HLA-B*3501 restricted optimal epitopes defined by IFNy ELISpot screening and sequence analysis, combined with motif inference.

p/q values for HLA-B*3501 association with the optimal determined from 1009 adult subjects with chronic HIV-1 infection. Sites of polymorphisms are previously published, identified by lineage-corrected sequence analysis of Durban cohort (7).

Suppl. Table 3: Covariation at residue Gag-260

Covariation analysis (phylogenetic dependency network) for 9 high-variability p24 residues in >1,800 sequences from C-clade infected individuals from Botswana, Zimbabwe and Durban, South Africa.